Exercise 12

Graph the particular solution and several other solutions. What characteristics do these solutions have in common?

$$
y^{\prime \prime}+4 y=e^{-x}
$$

Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
y_{c}^{\prime \prime}+4 y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r x}+4\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+4=0
$$

Solve for r.

$$
r=\{-2 i, 2 i\}
$$

Two solutions to the ODE are $e^{-2 i x}$ and $e^{2 i x}$. By the principle of superposition, then,

$$
\begin{aligned}
y_{c}(x) & =C_{1} e^{-2 i x}+C_{2} e^{2 i x} \\
& =C_{1}(\cos 2 x-i \sin 2 x)+C_{2}(\cos 2 x+i \sin 2 x) \\
& =\left(C_{1}+C_{2}\right) \cos 2 x+\left(-i C_{1}+i C_{2}\right) \sin 2 x \\
& =C_{3} \cos 2 x+C_{4} \sin 2 x .
\end{aligned}
$$

On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
y_{p}^{\prime \prime}+4 y_{p}=e^{-x} \tag{2}
\end{equation*}
$$

Since the inhomogeneous term is an exponential function, the particular solution is $y_{p}=A e^{-x}$.

$$
y_{p}=A e^{-x} \quad \rightarrow \quad y_{p}^{\prime}=-A e^{-x} \quad \rightarrow \quad y_{p}^{\prime \prime}=A e^{-x}
$$

Substitute these formulas into equation (2).

$$
\begin{gathered}
\left(A e^{-x}\right)+4\left(A e^{-x}\right)=e^{-x} \\
(A+4 A) e^{-x}=e^{-x}
\end{gathered}
$$

Match the coefficients on both sides to get an equation for A.

$$
A+4 A=1
$$

Solving it yields

$$
A=\frac{1}{5},
$$

which means the particular solution is

$$
y_{p}=\frac{1}{5} e^{-x} .
$$

Therefore, the general solution to the ODE is

$$
\begin{aligned}
y(x) & =y_{c}+y_{p} \\
& =C_{3} \cos 2 x+C_{4} \sin 2 x+\frac{1}{5} e^{-x},
\end{aligned}
$$

where C_{1} and C_{2} are arbitrary constants. Below is a graph of the two sinusoidal functions and the particular solution.

As $x \rightarrow \infty$, all solutions tend to a linear combination of $\cos 2 x$ and $\sin 2 x$. And as $x \rightarrow-\infty, y(x)$ blows up to infinity.

